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We study one-dimensional reactionsmA→nA (m.n) with nucleation and finite reaction rate (k!1) in one
dimension for the particle density decay by means of a Monte Carlo simulation and analytic modeling. The
anomalous casem52 was studied in our previous work. The marginal casem53 is described without
logaritmic corrections in the mean field approach. The casem.3 is well described by classical rate equations.
The rate equation for the particle density is derived for allm. We present a mean field approach for the early
time regime~reaction-controlled limit! for any initial density. Also, the mean field aproximation is derived in
a simple way from the rate equation for any time at low densities.@S1063-651X~96!08012-9#

PACS number~s!: 05.40.1j, 02.50.Ng, 82.20.Mj, 82.20.Wt

I. INTRODUCTION

The reaction-diffusion systems in low dimensions have
been investigated widely in recent years@1–6,8#. Most re-
search has focused on one-component coalescence coagula-
tion A1A→A, and annihilationA1A→0 in low dimen-
sions. The last two systems were solved exactly in one
dimension for diffusion-limited reactions with infinite rate.
These processes show the breakdown of the mean field ap-
proximation for reaction kinetics. In this case the diffusion-
limited coalescence processs occurs instantaneously. Experi-
mentally, reactions are never instantaneous@8,9#. This fact
can be modeled by introducing a probability of reaction be-
tween the particles when they attempt to occupy the same
site @3,4#. If the particles bounce off the model is known as
the hard-core model. Simulation and theoretical approach
@5,6# have been performed for one-component coalescence
processes in one dimension, with finite rate.

When the particles do not bounce off the model is known
as the nucleation model@7#. In this model, for the one-
dimensional coalescence with finite reaction rate, the early
time regimen is strongly dependent of the initial particle den-
sity. The particle density decays faster than the classical limit
@r;t21# and lower than the exponential limit
@r;exp(2kt)#. At very low densities we recover the same
results of the hard-core model. The long time regime
~anomalous diffusion! wherer;t21/2 is recovered. One con-
sequence of this model is that the particle number in any site
has a Poisson distribution in the early time regime and holds
approximately for all time when the probability of reaction
k!1.

A less studied problem is the one-dimensionalm-body
hard-core reactionsmA→nA (m.n), when m.2. For
m.3 the asymptotic large-time behavior is mean field, while
m53 is marginal. Study of multiparticle reactions has been
emphasized due to the relevance to certain deposition pro-
cesses@10#. ThemA→0 reaction kinetics is asympototically
equivalent to the dynamics of empty sites in deposition pro-
cesses with diffusional relaxations. For them-body hard-core

reactions the short-time regime has not, to our knowledge,
been studied so far.

In this paper we study the one-dimensional multiple-body
reactions with nucleation and finite reaction rate. The physi-
cal model assumes that one or more particles in a finite space
region act as a nucleus for the particles that diffuse into a
region without reacting. We associate these physical regions
with discrete lattice sites. The mathematical model assumes
that one or more particles can coexist in the same site to
avoid the extra interaction of the volume effect@7#. We use
the nucleation model for the particle density decay by means
of the Monte Carlo simulation and the analytic model.

The paper is organized as follows. In Sec. II we present
our model and the Monte Carlo simulation. The rate equation
for the particle density is obtained. Also, we develop an ana-
lytic approach for the time evolution of particle density. The
early time regime and diffusion-controlled regime are de-
scribed, when the diffusion rate is much greater than that of
the reaction rate (k!1). In both regimes we applied the
mean field approximation form.2. Finally, we conclude
with a discussion in Sec. III.

II. THEORETICAL APPROACH AND MONTE CARLO
SIMULATION

In this model the particles perform a random walk be-
tween nearest-neighbor sites in a one-dimensional lattice of
lengthL with periodic boundary conditions. The particles are
allowed to nucleate in the same position.

At the initial time, we start with a fix density of particles
r0. The lattice sites are chosen at random to be occupied
with one particle until the lattice is filled withN05Lr0 par-
ticles. In our model the probability to choose a site at random
is 1/L. So, the Poisson distribution is appropiate to model the
random variableJ that denotes the number of particles in any
site.

In the simulation, at each Monte Carlo step, one of the
N(t) particles is randomly picked, to jump to any of the
nearest-neighbor sites with the same probability 1/2. This
jump always happens because many particles can coexist in
the same site. When the selected site is occupied by less than
(m21) particles the picked particle diffuses. If the chosen*Electronic address: lbrauns@mdp.edu.ar
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site is occupied less by (m21) particles, (m2n) particles
react with probabilityk. If the reaction takes place these
particles are removed from the system and the number of
particles decreases@N(t)→N(t)2(m2n)#. Otherwise, the
selected particle stays in the chosen site with probability
(12k). At each Monte Carlo step the time is increased by
dt51/N(t).

For k50 the particles merely diffuse, so the Poisson dis-
tribution holds for all time. Whenk is very small but finite,
there has been seen little deviation from the Poisson distri-
bution @7#. When k increases this deviation also increases.
Thus the reaction rate induces the departure. The early time
regime is dominated by the slow reaction rate~reaction-
limited case! and nondeparture exists.

In one Monte Carlo stepdt51/N(t), if the reaction is
successful thendr52(m2n)/L. Let j and j11 be the oc-
cupied sites, withnj andnj11 particles, respectively. Then
the probability to select one of thenj ’s to diffuse to the
( j11)th site and react isQ(nj112m22)nj /(2N). Here
Q(x) is the Heaviside function@Q(x)51 for x.0 and is
equal to 0 otherwise#. Similarly, the probability to select one
of the nj11’s to diffuse to the j th site and react is
Q(nj2m22)nj11 /(2N). The probability that the number
of particles in the system decreases in (m2n) is

W@N→N2~m2n!#

5k(
j51

L
Q~nj112m22!nj1Q~nj2m22!nj11

2N
,

for all n, and taking into account that

dr

dt
5

dr

dt
W@N→N2~m2n!#,

the rate equation for the particle density
@r(t)51/L( j51

L nj (t)# is

dr

dt
52k~m2n!Gn~m!, ~2.1!

where

Gn~m!5
1

L(j51

L

Q~nj2m22!S nj211nj11

2 D .
Otherwise, Eq.~2.1! can be derived from a master equation
@7#. Notice that whenm52 the Heaviside function is the
j th site occupation number. We recover the rate equation@7#
for the coalescence model (n51).

For m.3 the mean field behavior became more pro-
nounced ask decreased. The marginal casem53 also has
mean field behavior with logarithmic corrections. The mean
field approximation for Eq.~2.1! is

dr

dt
52k~m2n!P@J>m21#r, ~2.2!

where P@J>m21# is the probability to find more than
(m21) particles at any site.

At the initial time we start with a random site distribution.
Then in Eq.~2.2! the probability has a Poisson distribution

P@J>m21#5 (
j>m21

r je2r

j !
. ~2.3!

In the early time regime, the particles merely diffuse with
a finite reaction rate and there is a negligible change in the
initial density. Expanding the probability in Eq.~2.2! around
r0 up to first order, the solution@with initial condition
r(0)5r0# is

r~t!5
ar0

~a1b!eat2b
, ~2.4!

where t5k(m2n)t, b5r0P0@J5m22#, and
a5P0@J>m21#2b (P0 is the probability evaluated at
r0). The good agreement between the Monte Carlo simula-
tion results and Eq.~2.4! at the early time regime is dis-
played in Fig. 1.

In the long time regime fork!1 mean field holds, so

r~t!5F 1

r0
m21 1

t

~m22!! G21/~m21!

, ~2.5!

as t→`. Notice that form52 the kinetics is anomalous
~disagrees with the classical prediction!.

When k!1, Eq. ~2.3! holds approximately. So, when
r!1, we keep the first order term in Eq.~2.3! and we re-
cover Eq. ~2.5! from Eq. ~2.2! in a simple way. Clearly,
within this approximation we cannot reproduce the logarith-
mic corrections of the marginal case 3A→nA (n50,1,2)
~see the deviation in Fig. 2!. It is easy to see that forr0!1
andk!1, this equation also holds in the early time regime.
However, we observed that above a certain initial density Eq.
~2.5! fails in the early time regime~see Figs. 2,3!.

III. CONCLUSIONS

We have introduced a diffusion limitedmA→nA
(m.n) with nucleation and finite reaction rate in one dimen-

FIG. 1. Particle density vs (m2n)kt in the early time regime.
We display the Monte Carlo results~symbols! and analytic results
from Eq. ~2.4! ~dashed line! for different initial densities. Here
m53, n51, k50.01 andr053 (h), 0.8 (,), 0.2 (s).
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sion for the particle density decay by means of the Monte
Carlo simulation and the analytic modeling. Summarizing,
the principal features of the model are the following:~a! the
particles can be crowded in the same site,~b! the nucleated
particles cannot react between them, and~c! the reaction is
allowed between the particles of adjacent sites. One conse-
quence of the model is that the particle number in any site
has Poisson distribution in the early time regime and holds
approximately for all time whenk!1. We have derived the
rate equation~2.1! for the particle density. The early time
regime has been characterized by an analytic approach and
compared with Monte Carlo simulation results. In spite of

the fact that we cannot reproduce logaritmic correction of the
marginal case, the most important feature of this model is
that the Poisson distribution allows us to obtain, in an easy
way, the mean field solution. This solution holds for all time
for r0!1 and in the asympotic regime forr0@1.
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FIG. 2. Particle density vs time. Monte Carlo results for
k50.01 andr053 (h), 0.8 (,), 0.2 (s). The dashed lines shows
the mean field approximation. Herem53 andn51.

FIG. 3. Same as Fig. 2 but withm54 andn51.
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